GEMV 6: Routes and Fabric DSDs
Contents
GEMV 6: Routes and Fabric DSDs¶
Continuing from the previous example, we now break up a single GEMV computation among two PEs.
The host program copies b
into the y
tensor of the left PE.
The left PE also gets the first N/2
columns of A
and the first N/2
values of x
, and the right PE gets the last N/2
columns of A
and last N/2
values of x
.
The left and right PE both increment their local y
tensors by computing
their piece of Ax
.
Then, the left PE sends its result to the right PE, which increments its y
tensor by the received values.
Last, the host copies y
from the right PE, and checks that the result is
correct.
To send data from the left PE to the right PE, we must specify a route, known
as a color.
In layout.csl
, @set_color_config
specifies that on the left PE,
color 0 will receive data, or wavelets, from the compute element (CE)
up the RAMP, and transmit them to the EAST.
On the right PE, color 0 will receive wavelets form the WEST
, and then
transmit them down the RAMP to the CE.
@set_tile_code
passes the ID of this color to pe_program
as a
parameter named send_color
, and also sets a paremeter called pe_id
,
to diffentiate if the program is running on the left or the right PE.
The send_right
function executed on the left PE defines a fabout_dsd
called out_dsd
that sends M
wavelets along the color route specified
by send_color
.
out_dsd
is used as the destination operand of @fmovs
, and y_dsd
as the source operand.
Thus, this operation sends the M
elements accessed by y_dsd
along the
fabric as specified by out_dsd
.
The recv_left
function executed on the right PE receives the data in a
fabin_dsd
named in_dsd
, used in an @fadds
operation that
increments the M
elements of y
on this PE by the M
received values.
Note that this program also provides an example of a color-activated task.
The @fmovs
and @fadds
operations are performed asynchronously;
when these operations are done, the color exit_color
is activated, which
activates the task exit_task
.
This task unblocks memcpy
’s command stream, allowing additional commands
from the host program to proceed.
Note
See GEMV Tutorial 6: Routes and Fabric DSDs for a step-by-step walkthrough of this example.
layout.csl¶
// matrix dimensions on each PE
param M: i16;
param N: i16;
param send_color: color = @get_color(0);
// This example only uses 2 PEs
const memcpy = @import_module("<memcpy_multi/get_params>", .{
.width = 2,
.height = 1
});
layout {
// PE coordinates are (column, row)
@set_rectangle(2, 1);
// Left PE (0, 0)
@set_tile_code(0, 0, "pe_program.csl", .{
.memcpy_params = memcpy.get_params(0),
.M = M,
.N_per_PE = N / 2,
.pe_id = 0,
.send_color = send_color
});
// Left PE sends its result to the right
@set_color_config(0, 0, send_color, .{.routes = .{ .rx = .{RAMP}, .tx = .{EAST} }});
// Right PE (1, 0)
@set_tile_code(1, 0, "pe_program.csl", .{
.memcpy_params = memcpy.get_params(1),
.M = M,
.N_per_PE = N / 2,
.pe_id = 1,
.send_color = send_color
});
// Right PE receives result of left PE
@set_color_config(1, 0, send_color, .{.routes = .{ .rx = .{WEST}, .tx = .{RAMP} }});
// export symbol names
@export_name("A", [*]f32, true);
@export_name("x", [*]f32, true);
@export_name("y", [*]f32, true);
@export_name("compute", fn()void);
}
pe_program.csl¶
param memcpy_params: comptime_struct;
// Matrix dimensions
param M: i16;
param N_per_PE: i16;
// ID of PE (0 is left, 1 is right)
param pe_id: i16;
// Color used to send/recv data between PEs
param send_color: color;
const LAUNCH: color = @get_color(8);
const exit_color: color = @get_color(9);
// memcpy module provides infrastructure for copying data
// and launching functions from the host
const sys_mod = @import_module("<memcpy_multi/memcpy>", @concat_structs(memcpy_params, .{
.LAUNCH = LAUNCH
}));
// 48 kB of global memory contain A, x, b, y
var A: [M*N_per_PE]f32; // A is stored column major
var x: [N_per_PE]f32;
var y: [M]f32;
// DSDs for accessing A, b, y
// A_dsd accesses column of A
var A_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M} -> A[i] });
var y_dsd = @get_dsd(mem1d_dsd, .{ .tensor_access = |i|{M} -> y[i] });
// ptrs to A, x, b, y will be advertised as symbols to host
var A_ptr: [*]f32 = &A;
var x_ptr: [*]f32 = &x;
var y_ptr: [*]f32 = &y;
// Compute gemv
fn gemv() void {
// Loop over all columns of A
for (@range(i16, N_per_PE)) |i| {
// Calculate contribution to A*x from ith column of A, ith elem of x
@fmacs(y_dsd, y_dsd, A_dsd, x[i]);
// Move A_dsd to next column of A
A_dsd = @increment_dsd_offset(A_dsd, M, f32);
}
}
fn send_right() void {
const out_dsd = @get_dsd(fabout_dsd, .{
.fabric_color = send_color, .extent = M,
.output_queue = @get_output_queue(0)
});
// After fmovs is done, activate exit_task to unblock cmd_stream
@fmovs(out_dsd, y_dsd, .{ .async = true, .activate = exit_color });
}
fn recv_left() void {
const in_dsd = @get_dsd(fabin_dsd, .{
.fabric_color = send_color, .extent = M,
.input_queue = @get_input_queue(1)
});
// After fadds is done, activate exit_task to unblock cmd_stream
@fadds(y_dsd, y_dsd, in_dsd, .{ .async = true, .activate = exit_color });
}
// Call initialize and gemv functions
fn compute() void {
gemv();
if (pe_id == 0) {
send_right();
} else {
recv_left();
}
}
task exit_task() void {
sys_mod.unblock_cmd_stream();
}
comptime {
// When exit_color is activated, exit_task will execute
@bind_task(exit_task, exit_color);
// send_color must be blocked so that default task bound to it
// by compiler does not consume its wavelets before in_dsd
// receives them in recv_left function
@block(send_color);
@export_symbol(A_ptr, "A");
@export_symbol(x_ptr, "x");
@export_symbol(y_ptr, "y");
@export_symbol(compute);
@rpc(LAUNCH);
}
run.py¶
#!/usr/bin/env cs_python
import argparse
import json
import numpy as np
from cerebras.sdk.runtime.sdkruntimepybind import SdkRuntime, MemcpyDataType, MemcpyOrder # pylint: disable=no-name-in-module
# Read arguments
parser = argparse.ArgumentParser()
parser.add_argument('--name', help="the test compile output dir")
parser.add_argument('--cmaddr', help="IP:port for CS system")
args = parser.parse_args()
# Get matrix dimensions from compile metadata
with open(f"{args.name}/out.json", encoding='utf-8') as json_file:
compile_data = json.load(json_file)
# Matrix dimensions
N = int(compile_data['params']['N'])
M = int(compile_data['params']['M'])
# Construct A, x, b
A = np.arange(M*N, dtype=np.float32).reshape(M,N)
x = np.full(shape=N, fill_value=1.0, dtype=np.float32)
b = np.full(shape=M, fill_value=2.0, dtype=np.float32)
# Calculate expected y
y_expected = A@x + b
# Size of N dimension on each PE
N_per_PE = N // 2
# Construct a runner using SdkRuntime
runner = SdkRuntime(args.name, cmaddr=args.cmaddr)
# Get symbols for A, b, x, y on device
A_symbol = runner.get_id('A')
x_symbol = runner.get_id('x')
y_symbol = runner.get_id('y')
# Load and run the program
runner.load()
runner.run()
# Copy b into y of PE (0, 0)
runner.memcpy_h2d(y_symbol, b, 0, 0, 1, 1, M, streaming=False,
order=MemcpyOrder.ROW_MAJOR, data_type=MemcpyDataType.MEMCPY_32BIT, nonblock=False)
# Copy A in column major format
# PE (0, 0) gets first N/2 columns; PE (1, 0) gets last N/2 columns
runner.memcpy_h2d(A_symbol, A.transpose().ravel(), 0, 0, 2, 1, M*N_per_PE, streaming=False,
order=MemcpyOrder.ROW_MAJOR, data_type=MemcpyDataType.MEMCPY_32BIT, nonblock=False)
# PE (0, 0) gets first N/2 elements; PE (1, 0) gets last N/2 elements
runner.memcpy_h2d(x_symbol, x, 0, 0, 2, 1, N_per_PE, streaming=False,
order=MemcpyOrder.ROW_MAJOR, data_type=MemcpyDataType.MEMCPY_32BIT, nonblock=False)
# Launch the compute function on device
runner.launch('compute', nonblock=False)
# Copy y back from PE (1, 0)
y_result = np.zeros([M], dtype=np.float32)
runner.memcpy_d2h(y_result, y_symbol, 1, 0, 1, 1, M, streaming=False,
order=MemcpyOrder.ROW_MAJOR, data_type=MemcpyDataType.MEMCPY_32BIT, nonblock=False)
# Stop the program
runner.stop()
# Ensure that the result matches our expectation
np.testing.assert_allclose(y_result, y_expected, atol=0.01, rtol=0)
print("SUCCESS!")
commands.sh¶
#!/usr/bin/env bash
set -e
cslc ./layout.csl --fabric-dims=11,3 \
--fabric-offsets=4,1 --params=M:4,N:6 -o out --memcpy --channels 1
cs_python run.py --name out